Beam Energy Scan: Flow Measurements from the STAR Experiment #### Xionghong He for the STAR collaboration Institute of Modern Physics, Chinese Academy of Sciences 2022 RHIC/AGS Annual Users' Meeting (June 7 - June 10, 2022) ### Anisotropic Flow in Heavy Ion Collisions **Heavy ion collisions:** Initial spatial anisotropy \rightarrow Pressure gradient \rightarrow Anisotropic flow $$E\frac{d^3N}{dp^3} = \frac{1}{2\pi} \frac{d^2N}{p_T dp_T dy} \left(1 + \sum_{1}^{\infty} 2v_n \cos[n(\phi - \psi_{RP})]\right)$$ v₁: directed flow v₂: elliptic flow v₃: triangular flow #### Provide accesses to - → Equation of State (EoS) Established at the early stage, sensitive to the initial pressure - → Phase transition Dependence on collision energy - → Particle production Number of constituent quark(nucleon) scaling ### Beam Energy Scan (BES) $$\sqrt{s_{NN}} = 3 - 62.4 \text{ GeV Au+Au collisions}$$ Baryon Chemical Potential μ_B - Critical point - ➤ 1st order QCD phase transition #### Results from • BES-I | $\sqrt{s_{NN}}$ (GeV) | 7.7 | 11.5 | 14.5 | 19.6 | 27 | 39 | |-----------------------|-----|------|------|------|------|-------| | Events | 4 M | 12 M | 11 M | 36 M | 70 M | 130 M | BES-II and FXT | $\sqrt{s_{NN}}$ (GeV) | 3 | 7.2 | 14.6 | 19.6 | |-----------------------|-------|-------|-------|-------| | Events | 260 M | 155 M | 180 M | 478 M | - ☐ Light and strange hadrons flow - \square Light nuclei v_1 and v_2 - \square Hyper-nuclei v_1 ### v_1 and v_2 for Hadrons at $\sqrt{s_{NN}} = 3 \text{ GeV}$ - Values of v₂ for studied particles are negative - NCQ scaling is absent The data can be qualitatively reproduced with baryonic mean-field (incompressibility κ =380MeV) transport models. ### 3 GeV: disappearance of partonic collectivity and likely dominated by baryonic interactions ### v_3 for Hadrons at $\sqrt{s_{NN}} = 3 \text{ GeV}$ Measured with respect to the first order event plane. - Non-zero proton v_3 , decreases monotonically with the collision centrality - Negative slope of v_3 vs. rapidity $(dv_3/dy=-0.025\pm0.005)$ for 10-40% centrality) 3 GeV: v_3 is found to be correlated with the first order event plane. It is sensitive to EoS^* . *P. Hillmann et al J. Phys. G: Nucl. Part. Phys. 45, 085101(2018) ### v_2 for Hadrons at $\sqrt{s_{NN}} = 19.6$ GeV Quark Matter 2022 - v₂ for all light and strange hadrons follow the NCQ scaling → Partonic degree of freedom - Scaling holds better for anti-particles than for particles 6 ### v_1 and v_2 for ϕ Meson The φ meson flow is expected to be sensitive to the early stage of collision system. - The φ meson v₂ follows the NCQ scaling at $\sqrt{s_{NN}} > 14.6 \text{ GeV}$ - The φ meson v_1 slope shows the sign change at $\sqrt{s_{NN}} \sim 10$ GeV, similar to baryons, but not for anti-baryons and light mesons - Need theoretical explanations ### Light Nucleus Flow in Heavy Ion Collisions #### Light nuclei: nucleon-nucleon correlation - ☐ Same chemical freeze-out temperature with hadrons - ☐ Small binding energies (2.2 MeV for deuteron) The production mechanisms: thermal? coalescence of nucleons? #### One of experimental probes: flow The coalescence picture: atomic mass number A scaling $$v_n^A(p_T, y) \approx A v_n^p(p_T/A, y) (v_n^p << 1)$$ #### **High baryon density** - ☐ Light nuclei flow has stronger energy dependence - ☐ More sensitive to the EoS FOPI Collaboration, Nuclear Physics A 876, 1 (2012) ### v_1 and v_2 for Light Nuclei at $\sqrt{s_{NN}} = 3 \text{ GeV}$ - Light nucleus $v_1(y)$ slope and $v_1(p_T)$ follow the A scaling - v₂ values at midrapidity are negative and not scaled with A - Simple nucleon coalescence picture qualitatively describes the data Light nuclei production is consistent with the coalescence picture at 3 GeV. ### Light Nuclei v₂ at 27 GeV and 54.4 GeV Quark Matter 2022 • 10-20% deviation from mass number scaling, coalescence production? ### Light Nuclei v₁ from BES-I - The v_1 slopes for deuteron are positive in studied $\sqrt{s_{NN}}$ - At 7.7 GeV, deuteron v_1 shows enhancement towards very low p_T For $\sqrt{s_{NN}}$ >7.7 GeV, there is a hint that the v_1 slopes for deuteron are in contrast to negative v_1 slopes for protons. ➤ High precision measurement at BES-II is underway ### Hyper-Nuclei Flow in Heavy Ion Collisions #### Hyper-nuclei: bound states of nuclei and hyperon - Probe to the hyperon-nucleon (Y-N) interaction - Properties of neutron star (EoS, radius) #### **Λ** hyper-nuclei - ☐ Small binding energies - \square Comparable lifetime with Λ hyperon - ☐ Maximum yield at several GeV (BES-II) - ☐ Unsettled production mechanisms in heavy-ion collision ### Hyper-nuclei v₁ at 3 GeV -0.5 0.0 0.5 Particle Rapidity y • First observation of hyper-nuclei collectivity in heavy-ion collisions 0.0 • $v_1(y)$ and slopes are close to those of light nuclei with a same A -0.5 Hyper-nuclei formation in the heavy-ion collisions: coalescence of hyperon and nuclei 0.5 Mass (GeV/c²) **BES-II:** high statistics + high event plane resolution \rightarrow high precision measurements | $\sqrt{s_{NN}}$ (GeV) | μ _B (MeV) | Events | Date
collected | |-----------------------|----------------------|------------|-------------------| | 19.6 | 206 | 478 M | 2019 | | 14.6 | 262 | 324 M | 2019 | | 11.5 | 316 | 235 M | 2020 | | 9.2 | 373 | 162 M | 2020 | | 7.7 | 422 | 101M+163 M | 2021 | | 6.2 | 487 | 118 M | 2020 | | 5.2 | 541 | 103 M | 2020 | | 4.5 | 589 | 108 M | 2020 | | 3.9 | 632 | 170 M | 2020 | | 3.5 | 666 | 116 M | 2020 | | 3.2 | 697 | 201 M | 2019 | | 3.0 | 721 | 2361 M | 2021 | ### ☐ Light nuclei v₁ A hint of opposite sign of dv₁/dy with those of hadrons, important for understanding the production mechanism #### **□** Hyper-nuclei Energy dependence of flow ### \Box v₃ for hadrons Sensitive probe to the EoS \square Multi-strange hadrons' v_1 ### **Summary** For the flow measurements at STAR, different behaviors have been observed at lower and higher collision energies. #### **Hadrons** - ☐ Lower collision energies (high baryon densities) - Baryons and φ -meson have positive v_1 slopes - At 3 GeV, NCQ scaling is absent for v₂; baryonic interaction may dominate the evolution - Non-zero proton $v_3(\psi_1)$ at 3 GeV, not likely to originate from initial state fluctuations - ☐ Higher collision energies - NCQ scaling indicates partonic degree of freedom #### Light nuclei and hyper-nuclei - ☐ Lower collision energies - First measurement of hyper-nuclei collectivity - Light nuclei and hype-nuclei flow are consistent with a production picture of nucleon coalescence - ☐ Higher collision energies - Light nuclei v₂ shows tension in the atomicmass number scaling - Hint of positive deuteron v₁ slopes High precision measurements from BES-II are ongoing! ## Back Up Physics Review C 94, 034908 (2016) For $\sqrt{s_{NN}}$ >7.7 GeV, the light nucleus v_2 follow A scaling of at low p_T . \rightarrow coalescence production